Inhibition of late sodium current by mexiletine: a novel pharmotherapeutical approach in timothy syndrome.

نویسندگان

  • Yuanfeng Gao
  • Xiaolin Xue
  • Dayi Hu
  • Wenling Liu
  • Yue Yuan
  • Hongmei Sun
  • Lei Li
  • Katherine W Timothy
  • Li Zhang
  • Cuilan Li
  • Gan-Xin Yan
چکیده

BACKGROUND Timothy syndrome (TS) is a rare long-QT syndrome caused by CACNA1C mutations G406R in exon 8A (TS1) and G402S/G406R in exon 8 (TS2). Management of TS is a challenge and prognosis is poor. This study aimed to explore the inheritance pattern and mechanism of an INa blocker, mexiletine, to improve clinical manifestations in TS. METHODS AND RESULTS A 2-year-old Chinese girl with a typical TS1 phenotype underwent candidate gene screening. Qualitative and quantitative cloning sequence and analyses for mosaicism were performed on family members. Therapeutic effects of mexiletine were evaluated using ECG and Holter monitoring. The electrophysiological effect of mexiletine was evaluated in a TS model using rabbit ventricular wedges. The proband with severe syndactyly and delayed language skills was identified harboring a G406R mutation in CACNA1C. Her baseline ECG showed markedly prolonged QTc, 2:1 AV block and macro-T wave alternans. G406R was absent in her mother but expressed in her father's oral mucosa, sperm, and white blood cells, indicating a mosaic carrier. Although asymptomatic, he exhibited mild QTc prolongation (470-490 ms) and syndactyly. Mexiletine shortened QTc from 584 to 515 ms, blunted QT-RR relationship, and abolished 2:1 AV block and T wave alternans in the girl. In in vitro studies, mexiletine inhibited late INa with IC₅₀ of 17.6±1.9 µmol/L and attenuated brady-dependent QT prolongation and reduced QT-RR slope in the TS model using BayK 8644. CONCLUSIONS Mexiletine shortened QTc, attenuated QT-RR slope, abolished 2:1 AV block and T wave alternans in a TS1 patient and TS model via inhibition of late INa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker

Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...

متن کامل

Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker

Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...

متن کامل

Complexity of ranolazine and phenytoin use in an infant with long QT syndrome type 3

Introduction Long QT syndrome type 3 (LQT3) results from gain-offunction mutations in the SCN5A gene, which encodes the major cardiac sodium channel, voltage-gated type V alpha subunit (NaV 1.5). Those mutations result in an increase in late sodium channel current, which leads to delayed ventricular repolarization, torsades de pointes (TdP), and sudden death. Traditionally, beta-blockers mexile...

متن کامل

Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3.

RATIONALE Sodium channel blockers are used as gene-specific treatments in long-QT syndrome type 3, which is caused by mutations in the sodium channel gene (SCN5A). Response to treatment is influenced by biophysical properties of mutations. OBJECTIVE We sought to investigate the unexpected deleterious effect of mexiletine in a mutation combining gain-of- function and trafficking abnormalities....

متن کامل

Gene-Specific Therapy With Mexiletine Reduces Arrhythmic Events in Patients With Long QT Syndrome Type 3

BACKGROUND Long QT syndrome type 3 (LQT3) is a lethal disease caused by gain-of-function mutations in the SCN5A gene, coding for the alpha-subunit of the sodium channel NaV1.5. Mexiletine is used to block late sodium current and to shorten QT interval in LQT3 patients. OBJECTIVES The aim of this study was to determine whether mexiletine prevents arrhythmic events (arrhythmic syncope, aborted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation. Arrhythmia and electrophysiology

دوره 6 3  شماره 

صفحات  -

تاریخ انتشار 2013